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Abstract-A generafization of the relaxation method [Budke and DieSka, Acta HZJV. Slav. 35, 27-39 
(1985)] has been elaborated. While an application of the relaxation method requires the sample holder 
temperature to be constant in time, this generalized version admits a polynomial change of the sample holder 
temperature. Such a temperature course is a very common and realistic one at temperature dependence 

measurements of thermal parameters. 

1. lNTRODUCTlON 

NON-STATIONARY methods for measuring the thermal 
parameters (thermal conductivity, I., and thermal 
diffusivity, a) of solid samples have been described in 
refs. [l-6]. They have involved a point, a line or a 
plane source. 

Non-stationary methods, based on the recording of 
a transient effect of heat transfer, are used mainly for 
the investigation of thermal properties of materials at 
continuously changing conditions of an experiment. 
In contrast to stationary methods they enable the 
realization of a measurement in a time substantially 
shorter than the time characteristic for the change in 
conditions of an experiment. These must be mostly 
taken into consideration either through the changes 
of the temperature of a sample holder or the change 
of thermal parameters of the measured sample in the 
course of time (as in the case of kinetic effect inves- 
tigations [7]). 

In this paper attention is focused on the applic- 
ability of the so called ‘relaxation method’ [6] at vary- 
ing conditions of an experiment, for a non-constant 
temperature variation of the sample holder. 

2. RELAXATION METHOD 

The relaxation method [6] is based on the recording 
of the time dependence of the temperature of a plane 
heat source, which is in ideal contact with one side of 
the measured plane-parallel sample (Fig. 1). 

The sample holder enforces the temperature 
7(x,, 1) = const. (where t is time, T is temperature and 
x0 is sample thickness) on that side of the sample, 
which is opposite the plane of the heat source. In 
practice a symmetrical arrangement is used with two 
samples and with the heat source between them. The 
heat source is assumed to be an ideal heat conductor 

with finite heat capacity per unit area C. The power 
per unit area, q(t), does not depend on the coordinates 
and is a step function of time. 

Heat losses from the source and the lateral walls of 
the [finite) plane-parallel sample (otherwise arbi- 
trarily shaped) are neglected. A detailed discussion 
of this assumption is presented in ref. [6]. The tem- 
perature changes occurring during one measure- 
ment are supposed to be so small, that the thermal 
parameters of the sample (thermal conductivity, ,I, 
and thermal diffusivity, a) are constant. 

Such a model is described by the one-dimensional 
heat conduction equation 

a T("X, t) a* T(x, t) 
at - yp-, (1) 

where a = i/c,p is thermal diffusivity (cr is the specific 
heat at the constant pressure and p is the mass density 
of the sample). The corresponding boundary con- 
ditions are : 

where 

heat 
source 
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T(O, 4 T(zo, t) 
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FIG. 1. The measured plane-parallel sample with the plane 
heat source. 
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a thermal diffusivity 

(‘P 
specific heat of sample at constant 
pressure 

C heat source heat capacity per unit area 
q. heat source power per unit area 
I time 
T temperature difference between the heat 

source and the sample holder 
f(x,p) Laplacc transformation of the 

function u(x, t) 
v,,/n! coefficient of a polynomiat 

x coordinate in the direction orthogonal to 
the plane-parallel sample 

_t’o thickness of sample. 

Greek symbols 
E increase rate of sample holder temperature 
0 unit jump function 
i thermal conductivity 

P” roots of characteristic function 

P mass density of sample 

TX time constant. 

do = S&O (3) 

and 

T(x,, t) = cl ; (4) 

O(t) is the unit step function. The initial condition is 

T(x,O) = 0. (5) 

It can be shown that for such a model the lemperature 
difference T(t) between the heat source and the sample 
holder is 

T(t) = T(0, t) = y (6) 

with 

where p,, are the roots of the characteristic equation 

CU 
cot ,D = y/1, y = EC;- . (8) 

0 

For time larger than the largest time constant r,, i.e. 
t > t , , equation (6) indicates 

T(t)= T,,,ax[l-A,exp(-:l)l, (9) 

where T,,, denotes 

(10) 

By fitting the parameters of formula (9) to the exper- 
imental values one can find T,,, and t , and from them 
the required parameters E, and a (see details in ref. 

161). 

3. THE RELAXATION METHOD AT VARYING 
TEMPERATURE CONDITIONS 

For many experimental conditions the sample 
holder temperature may vary with time. This implies 
that an additional value of temperature is super- 

imposed on the temperature field given by equations 
(I), (2), (4) and (5). This contribution, which will be 
denoted by u(.x, f), must satisfy the heat conduction 
equation (I), the boundary condition (2) without the 
heat source (q. = 0) and the initial condition (5). 
Instead of boundary condition (4) it is now required 
that 

(11) 

Relation (11) means that the sample holder tem- 
perature is described by a polynomial of the Nth 
degree with the known coefficients ~1, to one side of 
the sample. 

Applying Laplace transformation to equations (I), 
(2) and (I 1) the following are obtained : 

(12) 

(13) 

I(x,,p) = g u:,p-@+I’, 
n=” 

(14) 

where U(x,p) = sr e-p’u(x, t) dt is the Laplace trans- 
formation of the function u(x, t). 

The solution of this boundary problem can be 
written in the form 

-(Cp-Ak)exp( -,Y$) 
x ___ .-_. -...- -.. ..____ 

(Cp+AJ)exp(xOJ) ’ (“I 
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The Laplace transformation of the difference 

AGGn) = @,P) - fi(xo,p), (16) 

has the form 

where 

Au@) = U(X,,P)HP) - 11, (17) 

g(P) = 

);xOjsinh (x,,i)+cosh(xO$). (‘*) 

The inverse transformation of the relation (17) can be 
written as a convolution 

Au(t) = 
s 

&,, r)g(t-r) dr --a@,, 71, (19) 
0 

where 

(20) 

and 

G = 2”. PnJ(1 +Y*P3 
n x:, 1+y+y*p,2 (21) 

Time constants r,, are defined identically as in (7) and 
coefficients p,, are again the roots of the characteristic 

equation (8). Relation (19) can be, after some cal- 
culations, expressed in the form 

N--l 
Au(t) = c n,t”+ f B,exp 

k=O n= I 

where a,, S, and B,, are given by : 

(22) 

(23) 

(24) 

and 

B, = G, 2 (-l)m+‘u,z,m+‘. (25) 
In= I 

1. An iteration procedure to fit the expression on the 
right-hand side of equation (26) to the experimental 
values, T(t), i.e. the 1 and a, used in iterations, must 
be identical with those of calculated ones. When 
calculating the right-hand side of equation (26) the 
definition of ak is used, which needs the experimen- 
tal values of u,. u, is known from an independent 
measurement of the sample holder temperature. 

The coefficients G, are defined in equation (21). 

2. For identification of individual terms in equation 
(26) one can employ the following experimental pro- 
cedure : quantity T(t) is measured in time intervals 

4. DISCUSSION 

By measuring the transient temperature difference 
between the heat source and the sample holder the 
superposition of the influence of the heat source (6) 
and of the change of the sample holder temperature 
(22) can be obtained. These contributions cannot be 
separated during the measurement and, in general, 
they can be of the same order of magnitude. 

-when the heat source is active and 
-when it is inactive and all exponential transient 
effects have died away. 

The second group of measurements enables the first 
term on the right-hand side of equation (26) to be 
identified. From measurements, when the heat source 
is active, it is subsequently possible to determine 
values of T,,,,, and 7,. 

From the form of solution (22) an important gen- Such a sequence of computations can be used only 
eral property can be seen. If the sample holder tem- if the sample holder temperature is a smooth function 
perature changes in time as a polynomial of the Nth of time. In practice this is the most common case and 
degree and the heat source is inactive, the temperature the choice of N- 1 = 2 is precise enough. 

difference between the two sides of the plane-parallel 

sample is a polynomial of the (N- 1)th degree. 

The relation 

N--l 

T(t) E 1 Uktk+T,,,+(B,-T,,,A,)CXp 
k=ll 

(26) 

is now the analogue to the approximate relation (9). 
Relation (26) was obtained by summing the relations 
(6) and (22) for the time t > t , . 

From the experimentally obtained dependence of 

T(t)> T,,, and T, must be identified in order to deter- 

mine i and a, respectively. To do so, the coefficients 
a,, must be fixed in another way. Relation (23) shows 
the need of knowledge of coefficients v, (obtainable 
from the measurement of the time dependence of 
the sample holder temperature) and the knowledge 
of parameters S, in (24). Consider the first four of 
the S, : 

4 7 61 
S, =a” Y3+gYZ+m . (27) 

From the relations (27) it is evident that S,, and 
consequently ak, depend on yet unknown quantities i 
and a. This fact causes some complications which can 
be avoided in one of the two ways : 



3872 0. BUDKE and P. DIESKA 

/; 

I 

’ 

T ["Cl 
FIG. 2. Temperature dependences of thermal conductivity 
I measured at different rates of increase of sample holder 
temperature CC Dots denote a = 0.0018 K s-- ‘, A, tl = 0.0078 

K ss’, 0, c( = 0.018 K ss’. 

To illustrate our statements temperature depen- 
dence measurements of an epoxide bitumen thermal 
conductivity in a temperature interval of 2fk9O”C are 
considered. This material is characterized by a slight 
dependence L(T). The time constant z, of our samples 
wasr, rr 50s. 

Measurements are presented for the temperature 
dependences of thermal conductivity of samples at 
three different rates of increase of the sample holder 

temperature: c(, = 0.0018 K s- ‘, z2 = 0.0078 K s-’ 

and a3 = 0.018 K s ‘. From Fig. 2 it is evident that 
the values of thermal conductivity are nearly inde- 
pendent of CE.. When realizing that during one mea- 
suring period (N 10 x z ,) the temperature of sample 
holder has changed by about 0.9, 3.9 and 9 K, respec- 
tively, then the observed fact that 1 does not depend 
on t[ justifies the use of the proposed method. 

5. CONCLUSION 

A generalization of the relaxation method presented 
in ref. [6] has been elaborated. In this case the tem- 
perature of the surroundings need not be constant but 
it can change in time as a polynomial of the Nth 
degree. From the experimental point of view this 
method shortens the necessary time of usually lengthy 
temperature dependence measurements of thermal 
parameters and improves accuracy. 
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